

TUBACOAT

CO₂ to Olefins Improved yield reaction with ceramic coated reactor

INTRODUCTION

- Tubacoat and *CPWV group have researched the effect of using a ceramic coated reactor in the production of Olefins from CO₂
- The CPWV group is involved in the production of Olefins from CO2, in one single reactor, where at the same time Methanol is formed and transformed into olefins, using a tandem of oxide/zeolites catalysts.

TUBÂCEX

 $\tau = 5 g_{cat} h mol_c^{-1}$ $H_2/CO_x = 3$ $CO_{2}/CO_{x} = 0.1$

REACTOR CHEMICAL INERTIA STUDY

Reaction: H2/CO mixture at 400°C and 30 bar

□ If catalyst is not used, with both reactors the production of products is negligible, evidencing that the reactors are completely inert before its **FIRST** use.

CO₂ to Olefins Reaction Process

Reaction: H2/CO/CO₂ mixture at 400°C and 30 bar

- □ If catalyst is used, the difference in yield among both reactors is NOTICEABLE
- With the uncoated reactor, CH4 is formed due the catalytic activity of the Fe coming from the steel surface.
- No CH4 formation is observed after 16hours with the CERAMIC COATED REACTOR
- Methane yield is avoided and therefore the synergy among the catalysts is boosted

TUBACEX GROUP

TUBACEX

Ceramic Coated Reactor Repeatability Performance

Reaction: H2/CO/CO₂ mixture at 400°C and 30 bar

□ After 1000 hours of use, in several cycles of 16 hour each, the obtained products are completely reproducible, evidencing that the coating is still inert.

CH4 formation in the reaction medium

Reaction: H2/CO/CO₂ mixture at 400°C and 30 bar

□ When CH4 is formed in the reaction medium, due to the cracking of DME, with the uncoated reactor the steel surface promotes the autocatalytic CH₄ formation and the CH₄ starts increasing.

TUBACEX GROUP

Catalyst Regeneration Effect

Reaction: H2/CO/CO₂ mixture at 400°C and 30 bar

□ When the catalyst is regenerated at 400°C in air, which is mandatory for the viability of the process, CH4 formation is boosted even more after the contact of the steel surface with the oxygen, completely changing the obtained results.

Catalyst Regeneration Effect

Reaction: H2/CO/CO₂ mixture at 400°C and 30 bar

□ When the regeneration of the catalyst is done with the ceramic coated reactor, the CH4 formation after each regeneration cycle is not observed nor boosted.

