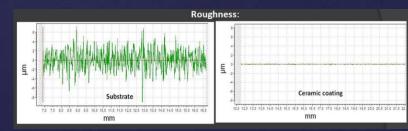
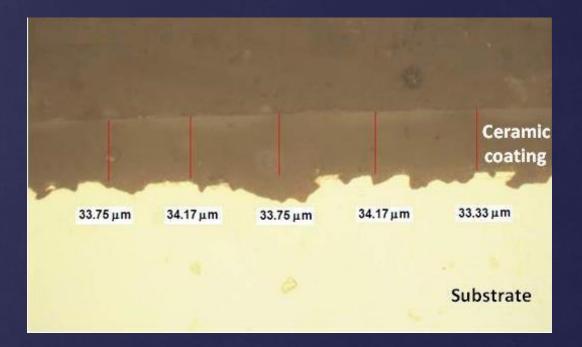


• Non permeable surface


- Aseptic (Inhibits bacterial growth)
- Hygienic (Easy-to-clean)
- High temperature resistance
- High chemical corrosion resistance
- Sun Light resistance (colour stability)
- Environmental corrosion resistance
- High hardness (scratch and abrasion)
- Environmentally Friendly (100% recyclable)

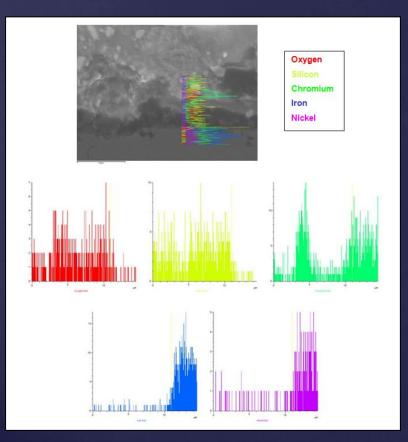
Abrasion resistance

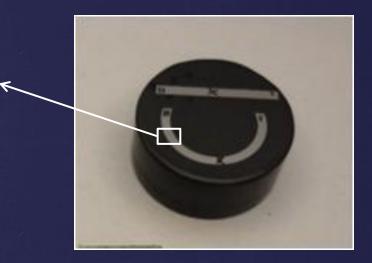


CERAMIC COATING PROPERTIES (R+D)

MORPHOLOGYCAL

Thickness: Optical microscopy

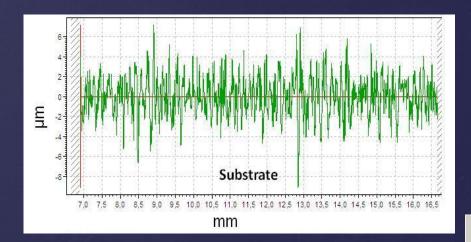

Continuous and homogeneous coating. Thickness can be adjust modifying rheological parameters based on final coating properties

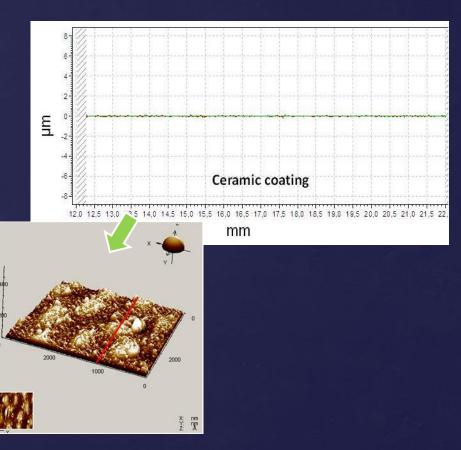


CERAMIC COATING PROPERTIES (R+D)

MORPHOLOGYCAL

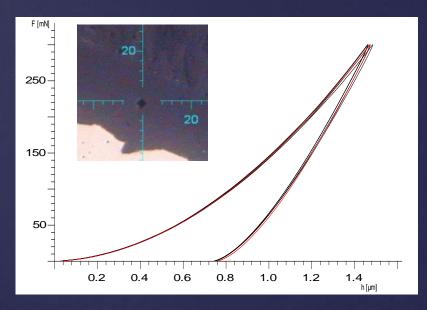
Chemical Bonding metal - ceramic : SEM

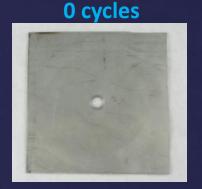

Mapping of SEM-EDX images of ceramic coating sintered in normal conditions in the interface between the substrate and the ceramic coating


MORPHOLOGYCAL

Roughness: Profilometry and AFM

Substrate Roughness Ceramic Coating Roughness $\begin{array}{ll} Ra\approx1,5\;\mu m & and & Rz\approx7,8\;\mu m \\ Ra<0,04\;\mu m & and & Rz\approx0,2\;\mu m \end{array}$


Important decrease of roughness, avoiding particles adhesion and pits


MECHANICAL

Microhardness

Abrasion resistance

10000 cycles

Substrate ∠w₁₀₀₀₀ = 58 mg
Ceramic coating ∠w₁₀₀₀₀ = 3 mg

THERMAL SHOCK

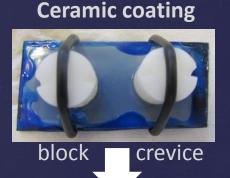
Cycles from 450°C to water cooled 20°C

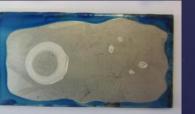
No delamination - No Cracks

	0 cycles	1 cycle	2 cycles	3 cycles	4 cycles	5 cycles	6 cycles
WATER cooled							

CHEMICAL CORROSION RESISTANCE

Crevice Corrosion Resistance


ASTM G48A


Method B-Ferric Chloride Crevice

Corrosion Test Stainless Steel

Pitting Corrosion Resistance ASTM G48A Method A-Ferric Chloride Pitting test:

10% FeCl3	Stainless steel	Ceramic coating
0 h (25 °C)		153.6
72 h (50 °C)		
Weight Loss (g/m2)	>700	≈0 ళ

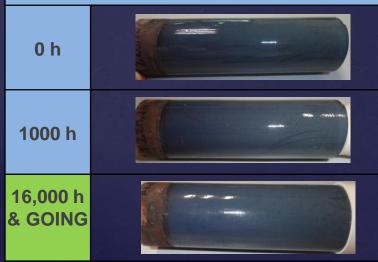
CHEMICAL CORROSION RESISTANCE

Seawater Corrosion Resistance (Offshore)

Conditions

Solution: 3,5% NaCl at 22 °C

Visual inspection after test


Conditions:

Molten salt composition: $NaNO_3 + KNO_3$ (60/40)

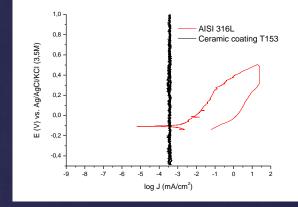
Molten salt Corrosion Resistance

46 cycles HEATING (8 hours at 400°C)/Cooling

Seawater Corrosion Test

Initial test

After 46 cycles /Before cleaning



CERAMIC COATING PROPERTIES (R+D)

CORROSION RESISTANCE

-Pitting potential measurement:

- JIS G-0577:2005
- Conditions:
 - Solution: 5% NaCl, 25 °C
 - o Counter electrode: Platinum
 - \circ Reference electrode: Ag/AgCl
 - The tested surface was fully immersed in test solution for 2 h
 - The test was conducted by potentiokinetic method from natural electrode potential to 1 mA/cm² of anodic current density
 - \circ Potential sweeping velocity: 1mV/s

	Ecorr	Log Jcorr
	(mV vs Ag/AgCl)	(mA/cm ²)
Stainless Steel	-106	-2.54
Ceramic coating	UNALTERED	

NO CORROSION

OTHER IMPORTANT PROPRIETIES (*)

LUBRICITY - Low friction applications **ADHESION -** Resistance to damage by impact, torsion, bending or heat shock. **IMPACT RESISTANCE -** Not fracture due to impact (Depending conditions) **FLEXIBILITY -**Good flexibility and adhesion when applied to thin metal substrates **STIFFENING -**Because of its low ductility and intimate bond **THICKNESS -** Wide range of thickness

RESISTANCE TO THERMAL OXIDATION/CORROSION - Provide both protection of the metal and ease of cleaning. THERMAL STABILITY - Ability to withstand intermittent or prolonged heat THERMAL EXPANSION – Designed to be the same as the substrate. EMISSIVITY - Power of a surface to release heat by radiation THERMAL CONDUCTIVITY RANGE ≈ 5-8 W/mK // Average (reference) ≈ 6 W/mK

MECHANICAL

THERMAL

DIELECTRIC STRENGTH - Normal is 200 to 500 volts/mil VOLUME RESISTIVITY DIELECTRIC CONSTANT - At 400-cycles per second and at room temperature, the dielectric constant is in the range of 6 to 12. DISSIPATION FACTOR - At 400-cycles per second and room temperature, the dissipation factor is about 1 or 2 %.

(*) See more: Other Ceramic Coating Proprieties Report